Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Controlling the downhole pressure is an important parameter for successful and safe drilling operations. Several types of weighting agents (i.e., high-density particles), traditionally barite particles, are added to maintain the desired density of the drilling fluid (DF). The DF density is an important design parameter for preventing multiple drilling complications. These issues are caused by the settling of the dense particles, an undesired phenomenon also referred to as sagging. Therefore, there is a need to understand the settling characteristics of heavy particles in such scenarios. To this end, simultaneous measurements of liquid phase flow patterns and particle settling velocities have been conducted in a Taylor-Couette (TC) cell with a rotating inner cylinder and stationary outer cylinder separated by an annular gap of 9.0 mm. Liquid flow patterns and particle settling velocities have been measured using particle image velocimetry (PIV) and particle tracking velocimetry (PTV) techniques, respectively. Experiments have been performed by varying the rotational speed of the inner cylinder up to 200 rev/min, which is used in normal drilling operations. Spherical particles with diameters of 3.0 mm or 4.0 mm and densities between 1.2 g/cm3 and 3.95 g/cm3 were used. The liquid phases studied included deionized (DI) water and mineral oil, which are the basic components of a non-Newtonian DF with a shear-thinning viscosity. The DF is a mud-like emulsion of opaque appearance, which impedes the ability to observe the liquid flow field and particle settling in the TC cell. To address this issue, a solution of carboxymethyl cellulose (CMC) with a 6% weight concentration in DI water was used. This non-Newtonian solution displays shear-thinning rheological behavior and was used as a transparent alternative to the opaque DF. For water, PIV results have shown wavy vortex flow (WVF) to turbulent Taylor vortex flow (TTVF), which agrees with the flow patterns reported in the literature. For mineral oil, circular Couette flow (CCF) was observed at up to 100 rev/min and vortex formation at 200 rev/min. For CMC, no vortex formation was observed up to 200 rev/min, only CCF. The settling velocities for all particles in water matched with the particle settling velocities predicted using the Basset-Boussinesq-Oseen (BBO) equation of motion. For mineral oil and CMC, the results did not match well with the predicted settling velocities, especially for heavy particles due possibly to the radial particle migration and interactions with the outer cylinder wall.more » « less
-
null (Ed.)Summary In this paper, we present the results of barite sag measurements before and after hot-rolled oil-based drilling fluids (OBDFs) using different approaches for characterization. We characterized the barite sag of a liquid column under static condition using light-scattering (LS) measurements, hydrostatic pressure measurements, and gamma densitometry. Under the dynamic condition, we used a rheometer with a grooved bob-in-cup measuring system to characterize barite sag in rotational and oscillatory shear conditions. Extensive rheological characterization of the drilling fluid samples, before hot rolling (BHR) and after hot rolling (AHR), is carried out. It is found that barite sag decreased in hot-rolled fluid samples from the LS, rotational, and oscillatory shear measurements. The rheological characterization of the fluid samples showed that heat-activated chemicals in the hot-rolled fluid sample increased the viscosity and elasticity, which contributed to lower barite sag and longer suspension of particles than BHR. Both hydrostatic and gamma densitometry measurements reveal more or less uniform compaction of barite particles in the fluid sample below the liquid layer. Time-dependent oscillatory shear measurements provide new insights on the structural character of drilling fluids to predict barite sag tendencies during the fluid design phase.more » « less
An official website of the United States government
